Total Quality Framework

Reflections on “Qualitative Literacy”

In March 2018, Mario Luis Small gave a public lecture at Columbia University on “Rhetoric and Evidence in a Polarized Society.” In this terrific must-read speech, Small asserts that today’s public Mario Luis Smalldiscourse concerning society’s most deserving issues – poverty, inequality, and economic opportunity – has been seriously weakened by the absence of “qualitative literacy.” Qualitative literacy has to do with “the ability to understand, handle, and properly interpret qualitative evidence” such as ethnographic and in-depth interview (IDI) data. Small contrasts the general lack of qualitative literacy with the “remarkable improvement” in “quantitative literacy” particularly among those in the media where data-driven journalism is on the rise, published stories are written with a greater knowledge of quantitative data and use of terminology (e.g., the inclusion of means and medians), and more care is given to the quantitative evidence cited in media commentary (i.e., op-eds).

Small explains that the extent to which a researcher (or journalist or anyone involved in the use of research) possesses qualitative literacy can be determined by looking at the person’s ability to “assess whether the ethnographer has collected and evaluated fieldnote data properly, or the interviewer has conducted interviews effectively and analyzed the transcripts properly.” This determination serves as the backbone of “basic qualitative literacy” which enables the research user to identify the difference between a rigorous qualitative study and Read Full Text

Applying the TQF Credibility Component: An IDI Case Study

The Total Quality Framework (TQF) is an approach to qualitative research design that integrates quality principles without stifling the fundamental and unique attributes of qualitative research. In so doing, the TQF helps qualitative researchers develop critical thinking skills by showing them how to give explicit attention to quality issues related to conceptualization, implementation, analysis, and reporting.

The following case study offers an example of how many of the concerns of the Credibility (or data collection) component of the TQF were applied to an in-depth interview (IDI) study conducted by Roller Research. This case study can be read in its entirety in Roller & Lavrakas (2015, pp. 100-103).

Credibility Component of the Total Quality FrameworkScope

This study was conducted for a large provider of information services associated with nonprofit organizations based in the U.S. The purpose was to investigate the information needs among current and former users of these information services in order to facilitate the development of “cutting edge” service concepts.

Eighty-six (86) IDIs were conducted among individuals within various grant-making and philanthropic organizations (e.g., private foundations, public charities, and education institutions) who are responsible for the decision to purchase and utilize these information services.

There were two important considerations in choosing to complete 86 interviews: (a) the required level of analysis – it was important to be able to analyze the data by the various types of organizations, and (b) practical considerations – the available budget (how much money there was to spend on the research) and time restrictions (the research findings were to be presented at an upcoming board meeting). In terms of mode, 28 IDIs were conducted with the largest, most complex users of these information services, while the remaining 58 interviews were conducted on the telephone.

Participants were stratified by type, size, and geographic location and then selected on an nth-name basis across the entire lists of users and former users provided by the research sponsor.

A high degree of cooperation was achieved during the recruitment process by way of: Read Full Text

Mobile & Online Qualitative Research: The Good, the Bad, & the Ugly

Data quality matters. Regardless of the research method or approach, our ability to say anything meaningful about our research outcomes hinges on the integrity of the data. The greater care the researcher takes to ensure the basic ingredients of “good” research design, the more confident the researcher and importantly the user of the research will be in the recommendations drawn from the research and its ultimate usefulness.

This focus on data quality applies to all research. And although it is most often a topic of discussion among survey researchers, data quality considerations are increasingly (I hope!) a discussion among qualitative researchers as well. Indeed, the underlying validity of our qualitative data is an important consideration regardless of the researcher’s paradigm orientation or the qualitative method, including the more recent methodological options – that is, mobile and online qualitative research.

Mobile and online technology – in particular, tech solutions that combine observation with a multimethod/mode approach – offer qualitative researchers new ways to investigate a variety of situations that give them a closer understanding of participants’ lived experiences as never before possible. Three such situations are: Read Full Text